非HIV人群中结核性脑膜炎和隐球菌性脑膜炎鉴别诊断列线图模型的开发和验证
作者:
作者单位:

1.空军军医大学西京医院神经内科,陕西 西安 710032;2.西北大学生命科学与医学院,陕西 西安 710069

作者简介:

赵帝(1991-),男,硕士研究生,研究方向:颅内感染与免疫。

通信作者:

赵钢(1960-),博士,主任医师,研究方向:人工智能、颅内感染与免疫。Email:zhaogang@fmmu.edu.cn。

基金项目:

陕西省自然科学基础研究计划资助项目(2019JQ-251 )


Development and validation of a nomogram model for the differential diagnosis of tuberculous meningitis and cryptococcal meningitis in the human immunodeficiency virus-negative population
Author:
Affiliation:

1.Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China;2.The College of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi 710069, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    目的 研究和开发针对非人类免疫缺陷病毒(HIV)人群中结核性脑膜炎和隐球菌性脑膜炎鉴别诊断的列线图模型,并对模型进行验证。方法 回顾性收集西京医院神经内科收治的292名结核性脑膜和隐球菌性脑膜炎患者的临床资料,根据入院时间将240名患者纳入训练组,52名患者纳入验证组。对训练组患者进行单因素和多因素分析,筛选鉴别两种脑膜炎的差异因子。利用R软件构建鉴别诊断列线图模型,并对模型进行验证。在训练组和验证组中绘制ROC曲线和校准曲线对模型进行评价。结果 单因素和多因素分析后发现,患者年龄、发热、自身免疫性疾病、脑脊液初压、脑脊液白细胞计数、脑脊液糖含量是鉴别结核性脑膜炎与隐球菌性脑膜炎的差异因子(P<0.05)。模型灵敏度为80%,特异度为76.47%。列线图模型ROC曲线下面积在训练组和验证组中分别为0.853和0.897,模型区分度和校准度较好。结论 在非HIV人群中结核性脑膜炎与隐球菌性脑膜炎的鉴别诊断列线图模型,对于基层医院进行脑膜炎的早期诊断和治疗具有一定的临床应用价值。

    Abstract:

    Objective To develop and validate a nomogram model for the differential diagnosis of tuberculous meningitis and cryptococcal meningitis in the human immunodeficiency virus (HIV)-negative population.Methods A retrospective analysis was performed for the clinical data of 292 patients with tuberculous meningitis or cryptococcal meningitis who were admitted to Department of Neurology, Xijing Hospital, and according to the time of admission, the patients were divided into training group with 240 patients and validation group with 52 patients. Univariate and multivariate logistic regression analyses were performed for the patients in the training group to screen out independent differentialfactors between the two types of meningitis. R software was used to establish a nomogram for differential diagnosis, and then the model was validated in the validation group. The receiver operating characteristic (ROC) curve and calibration curve were plotted to evaluate the model in the two groups.Results The univariate and multivariate logistic regression analyses showed thatage, pyrexia, autoimmune disease, initial pressure of cerebrospinal fluid, white blood cell count in cerebrospinal fluid, and glucose content of cerebrospinal fluid were independent differential factors for the differential diagnosis of tuberculous meningitis and cryptococcal meningitis (P<0.05). This model had a sensitivity of 80% and a specificity of 76.47%. The nomogram model had an area under the ROC curve of 0.853 in the training group and 0.897 in the validation group, and the model showed good differentiation and calibration.Conclusions The nomogram model used for the differential diagnosis of tuberculous meningitis and cryptococcal meningitis in the non-HIV population has a certain clinical value in the early diagnosis and treatment of meningitis in primary hospitals.

    参考文献
    相似文献
    引证文献
引用本文

赵帝,石晓丹,谢瑱,费笑非,赵钢456.非HIV人群中结核性脑膜炎和隐球菌性脑膜炎鉴别诊断列线图模型的开发和验证[J].国际神经病学神经外科学杂志,2021,48(2):103-109111ZHAO Di, SHI Xiao-Dan, XIE Zhen, FEI Xiao-Fei, ZHAO Gang222. Development and validation of a nomogram model for the differential diagnosis of tuberculous meningitis and cryptococcal meningitis in the human immunodeficiency virus-negative population[J]. Journal of International Neurology and Neurosurgery,2021,48(2):103-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-11-17
  • 最后修改日期:2021-04-02
  • 录用日期:
  • 在线发布日期: 2021-06-24
关闭
关闭