胶质瘤患者术后的影响因素分析及预后模型建立研究
DOI:
作者:
作者单位:

1.郑州大学第一附属医院;2.郑州大学第一附属医院 神经外科 郑州 河南

作者简介:

通信作者:

基金项目:

河南省科技攻关计划项目(242102311261)


Analysis of Influencing Factors and Establishment of Prognostic Model after Surgery in Patients with Glioma
Author:
Affiliation:

1.The First Affiliated Hospital of Zhengzhou University;2.Department of Neurosurgery,The First Affiliated Hospital of Zhengzhou University,Zhengzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    目的:深入分析胶质瘤患者术后的影响因素,并建立更为精准的预后模型,为临床治疗决策和预后评估提供可靠依据。方法:回顾性收集大量胶质瘤患者的临床资料,包括年龄、性别、肿瘤部位、病理分级、手术切除程度、术后放疗、化疗等多方面信息。运用统计分析方法,进行单因素和多因素分析,确定影响患者术后生存的关键独立危险因素。基于这些因素,利用机器学习算法建立预后模型,并通过内部验证和外部验证对模型进行全面评估。结果:综合分析表明,年龄、病理分级、手术切除程度、术后放疗、化疗等因素与患者术后生存时间显著相关。多因素分析进一步揭示了病理分级、手术切除程度、术后放疗等为影响患者术后生存的核心独立危险因素。所建立的预后模型具有卓越的预测性能,能够准确评估患者的预后。结论:本研究明确了病理分级、手术切除程度、术后放疗等是胶质瘤患者术后生存的重要影响因素。建立的预后模型为临床医生提供了有力的预后评估工具,有助于制定个性化的治疗方案,提高患者的生存率和生活质量。

    Abstract:

    Purpose: To deeply analyze the influencing factors after surgery in patients with glioma and establish a more accurate prognostic model to provide a reliable basis for clinical treatment decisions and prognostic evaluation. Methods: Retrospectively collect the clinical data of a large number of glioma patients, including information on age, gender, tumor location, pathological grade, degree of surgical resection, postoperative radiotherapy, chemotherapy and other aspects. Use advanced statistical analysis methods to conduct univariate and multivariate analyses to determine the key independent risk factors affecting postoperative survival of patients. Based on these factors, use powerful machine learning algorithms to establish a prognostic model and comprehensively evaluate the model through internal and external validations. Results: Comprehensive analysis shows that factors such as age, pathological grade, degree of surgical resection, postoperative radiotherapy, and chemotherapy are significantly related to the postoperative survival time of patients. Multivariate analysis further reveals that pathological grade, degree of surgical resection, and postoperative radiotherapy are the core independent risk factors affecting postoperative survival of patients. The established prognostic model has excellent predictive performance and can accurately evaluate the prognosis of patients. Conclusion: This study clarifies that pathological grade, degree of surgical resection, and postoperative radiotherapy are important influencing factors for postoperative survival of glioma patients. The established prognostic model provides a powerful prognostic evaluation tool for clinicians, helping to formulate personalized treatment plans and improve the survival rate and quality of life of patients.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-11-28
  • 录用日期:2024-12-03
  • 在线发布日期:
关闭
关闭