整合术前营养和炎症的综合指标预测高级别脑胶质瘤预后的列线图模型建立与验证
作者:
作者单位:

1.宜宾市第一人民医院神经外二科,四川 宜宾 644000;2.宜宾市第二人民医院神经外科,四川 宜宾 644000

作者简介:

通信作者:

基金项目:

四川省卫健委普及应用项目(18PJ541)。


Establishment and validation of a nomogram model for predicting the prognosis of high-grade glioma based on integrative preoperative nutritional and inflammatory indicators
Author:
Affiliation:

1.Second Department of Neurosurgery, The First People’s Hospital of Yibin, Yibin, Sichuan 644000, China;2.Department of Neurosurgery, The Second People’s Hospital of Yibin, Yibin, Sichuan 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    目的 利用整合术前营养和炎症的综合指标预测高级别脑胶质瘤预后,并建立列线图模型。方法 回顾性分析2015—2020年宜宾市第一人民医院收治的高级别脑胶质瘤患者110例,收集患者病历资料并随访至2022年12月30日,采用ROC曲线计算相关联合指标预测患者生存的曲线下面积和最佳截断值,Kaplan-Meier法绘制生存曲线,Log-rank检验和Cox回归分析影响患者预后的可能因素,R语言绘制列线图模型并进行内部(随机抽取80%样本)和外部验证(外部验证数据来源于宜宾市第二人民医院的40例高级别脑胶质瘤患者)。结果 中位随访时间15个月,平均生存周期11个月,患者6个月和1年生存率分别为84.55%和40.00%。控制营养状态(CONUT)评分、中性粒细胞和淋巴细胞比值(NLR)、血小板和淋巴细胞比值(PLR)与淋巴细胞和单核细胞比值(LMR)预测患者预后的最佳截断值分别为1.5分、2.58、88.33和5.34。CONUT评分、NLR、WHO分级、手术方式和GPS是高级别脑胶质瘤患者预后的影响因素,其HR(95% CI)分别为0.367(0.187~0.719)、0.666(0.460~0.965)、1.723(1.081~2.747)、0.569(0.372~0.871)、1.904(1.194~3.036)(GPS=1分)和3.386(1.841~6.231)(GPS=2分)(P<0.05)。列线图模型显示:CONUT评分、GPS、NLR、WHO分级和手术方式对应的最高得分分别为75、100、53、80和88分,以80%原始数据绘制预测生存率的ROC曲线下面积(AUC)为0.922(95% CI:0.901~0.949),Hosmer-Lemeshow拟合优度检验发现原始数据组和外部验证组数据吻合度较好(P=0.913和0.871)。结论 高级别脑胶质瘤预后差,CONUT评分、GPS、NLR、WHO分级和手术方式是患者预后的预测因子,基于此建立的列线图模型能很好预测患者生存预后。

    Abstract:

    Objective To investigate the application of integrative preoperative nutritional and inflammatory indicators in predicting the prognosis of high-grade glioma, and to establish a nomogram model.Methods A retrospective analysis was performed for 110 patients with high-grade glioma who were admitted to The First People’s Hospital of Yibin from 2015 to 2020. Medical records of the patients were collected, and the patients were followed up till December 30, 2022. The receiver operating characteristic (ROC) curve was used to calculate the area under the ROC curve (AUC) and optimal cut-off values of related indicators in predicting the survival of patients. The Kaplan-Meier method was used to plot the survival curve, and the log-rank test and Cox regression analysis were used to explore possible influencing factors for prognosis. R language was used to establish a nomogram model and perform internal validation (80% of the samples were randomly selected for validation) and external validation (the data for external validation were collected from 40 patients with high-grade glioma in The Second People’s Hospital of Yibin).Results The median follow-up time was 15 months, with a mean survival time of 11 months, and the 6-month and 1-year survival rates were 84.55% and 40.00%, respectively. Controlled Nutritional Status (CONUT) score, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) had an optimal cut-off value of 1.5 points, 2.58, 88.33, and 5.34, respectively, in predicting the prognosis of patients. The Cox regression analysis showed that CONUT score (hazard ratio [HR] = 0.367, 95% confidence interval [CI]: 0.187-0.719, P <0.05), NLR (HR = 0.666, 95% CI: 0.460-0.965, P <0.05), WHO grade (HR = 1.723, 95% CI: 1.081-2.747, P <0.05), surgical procedure (HR = 0.569, 95% CI: 0.372-0.871, P <0.05), and GPS of 1 point (HR = 1.904, 95% CI: 1.194-3.036, P <0.05), GPS of 2 points (HR = 3.386, 95% CI: 1.841-6.231, P <0.05)were influencing factors for the prognosis of patients with high-grade glioma. The nomogram model showed that the highest scores corresponding to CONUT score, GPS, NLR, WHO grade, and surgical procedure were 75 points, 100 points, 53 points, 80 points, and 88 points, respectively, and the ROC curve plotted for predicting survival using 80% raw data had an area under the ROC curve (AUC) of 0.922 (95% CI: 0.901-0.949). The Hosmer-Lemeshow goodness-of-fit test showed a good degree of fit between the original data group and the external validation group (P = 0.913 and 0.871).Conclusion High-grade glioma tend to have a poor prognosis, and CONUT score, GPS, NLR, WHO grade, and surgical procedure are predictive factors for the prognosis of patients. The nomogram model established based on these factors can effectively predict the prognosis of patients.

    图1 110例高级别胶质瘤患者总生存曲线Fig.1
    图2 4项指标联合预测患者预后的ROC曲线Fig.2
    图4 列线图模型预测患者生存时间的ROC曲线Fig.4
    图3 基于多项联合指标的脑胶质瘤预后列线图模型Fig.3
    图5 列线图模型预测患者生存时间的Hosmer-Lemeshow校准曲线Fig.5
    表 1 4项指标联合预测患者预后的ROC曲线Table 1
    表 2 患者临床预后影响因素的单因素分析Table 2
    表 3 脑胶质瘤患者预后影响因素的Cox回归分析Table 3
    参考文献
    相似文献
    引证文献
引用本文

曾婷,胡文静,刘雪梅,廖磊,华春林,刘洋,曾晓玲456.整合术前营养和炎症的综合指标预测高级别脑胶质瘤预后的列线图模型建立与验证[J].国际神经病学神经外科学杂志,2024,51(6):16-22111ZENG Ting, HU Wenjing, LIU Xuemei, LIAO Lei, HUA Chunlin, LIU Yang, ZENG Xiaoling222. Establishment and validation of a nomogram model for predicting the prognosis of high-grade glioma based on integrative preoperative nutritional and inflammatory indicators[J]. Journal of International Neurology and Neurosurgery,2024,51(6):16-22

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-25
  • 最后修改日期:2024-06-21
  • 录用日期:
  • 在线发布日期: 2025-01-10
关闭
关闭