高原地区急性脑梗死患者静脉溶栓后出血转化的因素分析及列线图预测模型构建
作者:
作者单位:

西宁市第二人民医院卒中中心,青海 西宁 810003

作者简介:

张冬(1984—),男,本科,主治医师,研究方向:神经介入。

通信作者:

解战兵(1969—),男,大专,副主任医师,研究方向:脑血管病,神经介入。Email: 731141107@qq.com。

基金项目:


Analysis of factors causing hemorrhagic transformation in patients with acute cerebral infarction after intravenous thrombolysis in plateau area and establishment of a nomogram prediction model
Author:
Affiliation:

Stroke Center, The Second People’s Hospital of Xining, Xining, Qinghai 810003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    目的 通过分析高原地区急性脑梗死(ACI)患者静脉溶栓后出血转化(HT)发生的影响因素,建立并评估个体化预测高原地区ACI患者静脉溶栓后HT发生风险的列线图模型。方法 选取2018年5月至2020年3月该院收治的ACI并进行重组组织型纤溶酶原激活剂(rt-PA)静脉溶栓治疗的患者162例为研究对象,并根据静脉溶栓治疗后是否发生HT将其分为HT组(34例)和非HT组(128例)。采用Logistic回归模型,分析ACI患者静脉溶栓后HT发生的影响因素。应用R语言(R 3.6.3)中的rms程序包绘制预测ACI患者静脉溶栓后HT发生风险的列线图模型。采用研究对象工作特征曲线(ROC)、校准曲线及Hosmer-Lemeshow拟合优度检验评估列线图模型进行验证。结果 Logistic回归模型显示,ACI患者静脉溶栓后HT的发生与糖尿病、脑梗死面积、发病至溶栓时间、NIHSS评分、血小板及D-二聚体密切相关(P<0.05)。ROC结果显示,预测ACI患者静脉溶栓后HT发生风险的AUC(95%CI)为0.831(0.727~0.935)。校准曲线为斜率接近为1的直线,Hosmer-Lemeshow拟合优度检验χ2=9.761,P=0.282。结论 该研究基于糖尿病、脑梗死面积、发病至溶栓时间、NIHSS评分、血小板、D-二聚体这6项影响因素构建的预测高原地区ACI患者静脉溶栓后HT发生风险的列线图模型,具有良好的区分度与准确度。

    Abstract:

    Objective To analyze the factors causing hemorrhagic transformation (HT) after intravenous thrombolysis in patients with acute cerebral infarction (ACI) in plateau area, and to establish and evaluate anomogram model for predicting the risk of HT in individual patients.Methods A total of 162 ACI patients who underwent intravenous thrombolytic therapy with recombinant tissue plasminogen activator (rt-PA) in our hospital from May 2018 to March 2020 were enrolled in this study. The patients were divided into HT group (34 cases) and non-HT group (128 cases). A logistic regression model was used to analyze the factors causing HT after intravenous thrombolysis. The rms package of R 3.6.3 was used to establish a nomogram model to predict the risk of HT in ACI patients after intravenous thrombolysis. The nomogram model was evaluated using receiver operating characteristic (ROC) curve, calibration curve, and Hosmer-Leme show goodness-of-fit test.Results The logistic regression model showed that the incidence of HT in ACI patients after intravenous thrombolysis was closely related to diabetes mellitus, cerebral infarction area, time from onset to thrombolysis, NIHSS score, platelet, and D-dimer (P<0.05). The ROC curve showed an area under the curve of 0.831 [95% confidence interval (CI): 0.727-0.935] for predicting HT risk in ACI patients after intravenous thrombolysis. The calibration curve was a straight line with a slope close to 1. The Hosmer-Lemeshow goodness-of-fit test showed χ2=9.761 and P=0.282.Conclusions Based on the above six independent factors, a nomogram model was established to predict the risk of HT in ACI patients after intravenous thrombolysis in plateau area with high discrimination and accuracy.

    表 2 多因素Logistic回归分析Table 2
    图2 列线图模型预测高原地区ACI患者静脉溶栓后HT发生的ROC曲线Fig.2
    图3 列线图模型预测高原地区ACI患者静脉溶栓后HT发生风险的验证Fig.3
    图1 预测高原地区ACI患者静脉溶栓后HT发生风险的列线图模型Fig.1
    表 1 各组基本资料比较Table 1
    参考文献
    相似文献
    引证文献
引用本文

张冬,解战兵456.高原地区急性脑梗死患者静脉溶栓后出血转化的因素分析及列线图预测模型构建[J].国际神经病学神经外科学杂志,2021,48(5):461-465111ZHANG Dong, XIE Zhan-Bing222. Analysis of factors causing hemorrhagic transformation in patients with acute cerebral infarction after intravenous thrombolysis in plateau area and establishment of a nomogram prediction model[J]. Journal of International Neurology and Neurosurgery,2021,48(5):461-465

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-08
  • 最后修改日期:2021-05-20
  • 录用日期:
  • 在线发布日期: 2021-11-15
关闭
关闭